
Live upgrading thousands of servers from an ancient
Red Hat distribution to 10 year newer Debian based one.

Marc MERLIN
Google, Inc.

Abstract

Google maintains many servers and employs a file level sync method with applications running in a different parti -
tion than the base Linux distribution that boots the machine and interacts with hardware. This experience report
first gives insights on how the distribution is setup, and then tackles the problem of doing a difficult upgrade from a
Red Hat 7.1 image snapshot with layers of patches to a Debian Testing based distribution built from source. We
will look at how this can actually be achieved as a live upgrade and without ending up with a long “flag day” where
many machines are running totally different distributions, which would have made testing and debugging of appli -
cations disastrous during a long switchover period.

Like a coworker of mine put it, “It was basically akin to upgrading Red Hat 7.1 to Fedora Core 16, a totally unsup -
ported and guaranteed to break upgrade, but also switching from rpm to dpkg in the process, and on live machines.”

The end of the paper summarizes how we designed our packaging system for the new distribution, as well as how
we build each new full distribution image from scratch in a few minutes.

Tags: infrastructure, Linux, distribution, live upgrade

Introduction

The Linux operating system that Google uses in our
service "production" environment has a strange history
which will be described before explaining how we up-
graded it.

Google’s production Linux OS is managed in three lay-
ers. The kernel and device drivers, user-space, and the
running applications.

The kernel and device drivers are updated frequently
and separately from the operating system. These files
are maintained, fleet-wide, by a different team. Aside
from obvious touch points, this maintenance is unre-
lated to the work described in this paper.

Each application runs in a chroot-ed jail. This jail in-
cludes all the programs, shared libraries, and data files
required for the application to run. Therefore they are
not entangled with the rest of the operating system.
This independence from the underlying operating sys-
tem is fairly extreme: even external libraries are stati-
cally linked. We provide multiple hermetic versions of
python, the C++ libraries, the C runtime loader and li-
braries that applications can choose from. These are all
decoupled from the booted operating system.

The remaining part is the user-space files - the init
scripts, the /usr/bin binaries, and so on. The OS’s na-
tive package system is only used for this part, which is
the focus of this paper.

Because of this decoupling the user-space portion
could go a long time without upgrades. In fact, it re-
mained at the equivalent of Red Hat 7.1 for many
years.

Changing a fleet of thousands of machines from one
distribution to another is a rare event and there is no
“best practice” for doing so. One could convert small
groups of machines until the entire fleet is converted.
During the transition the fleet would contain two dif-
ferent operating systems. That was unacceptable - the
entire Google fleet is kept within one or two minor OS
revisions at any given time. Adding multiple operating
systems would have multiplied complexity.

Instead we chose to transition parts of the OS one at a
time: the boot scripts, the user-space binaries, the pack-
age system, etc. Over 3 years the entire OS would
change, sometimes file by file, until it was completely
replaced. This permitted each little step to be fully
tested and possibly reverted. Most importantly users
would not see a “flag day” change. At our a large scale,
a small error is multiplied by thousands of machines.
The ability to move slowly, cautiously, and with large
amounts of testing, was critical.

System Administrators often refer to their work as
“changing the tires while the car is driving down the
highway”. In this case we changed the front left tire
across the entire fleet. Once that was done we changed
the steering wheel across the entire fleet. This process
continued and after four years we had an entirely new
car.

1. Google Servers and Linux, the early days

Like many startups, Google started with a Linux CD.
It started around 1998 with a Red Hat 6.2 that was in-
stalled on the production machines. Soon thereafter,
we got a kickstart network install, and it grew from
there.

Updates and custom configurations were a problem.
Machine owners had ssh loops to connect to machines
and run custom install/update commands. At some
point, they all got reinstalled with Red Hat 7.1 with
custom software re-installed on top, but obviously this
was not the right way to do things.

1.1. Better update management

The custom ssh loops were taking longer to run, and
missing more machines each time. It was quick and
dirty, but this has never scaled. Generally any push
based method is doomed.

Now, it's not uncommon to run apt-get or yum from
cron and hope updates will mostly work that way.
However, for those of you who have tried running apt-
get/dpkg/rpm/yum on thousands of servers, you may
have found that random failures, database corruptions
(for rpm) due to reboots/crashes during updates, and
other issues make this not very reliable.

Even if the package DBs don't fail, it's often a pain to
deal with updates to config files conflicting with pack-
ages, or unexpected machine state that breaks the pack-
age updates and causes all subsequent updates to fail
until an admin fixes the machine manually, or a crude
script simply wipes and re-installs the machine. The
first method doesn't scale and the second one can cause
data loss and outages.

1.2. Full file level filesystem sync

As crude as it is, file level syncing recovers from any
state and bypasses package managers and their unex-
pected errors. It makes all your servers the same
though, so custom packages and configs need to be
outside of the synced area or manually excluded. Each
server then has a list of custom files (network config,
resolv.conf, syslog files, etc...) that are excluded from
the sync.

Now, using rsync for entire machines off a master im-
age doesn't scale well on the server side, and can bog
the I/O on your clients, causing them to be too slow to
serve requests with acceptable latency. You also need
triggers that restart programs if certain files change.

So, we wrote custom rsync-like software where clients
initiate file level syncs from a master image. It then al-

lows for shell triggers to be run appropriately. IO is
throttled so that it does not negatively impact machines
serving live requests while they are being upgraded.

1.3. Isolating server packages from the
Server OS

We have custom per machine software that is outside
of the centrally managed root partition, and therefore
does not interfere with updates. In other words, the dis-
tribution is a fancy boot loader with housekeeping and
hardware monitoring tools. Applications go in a sepa-
rate partition and are not allowed to touch the
dpkg/rpm database, or modify the root partition in any
other way.

The software run by the server is typically run in a ch-
root with a limited view of the root partition, allowing
the application to be hermetic and protected from root
filesystem changes. We also have support for multiple
libcs and use static linking for most library uses. This
combination makes it easy to have hundreds of differ-
ent apps with their own dependencies that change at
their own pace without breaking if the OS that boots
the machine changes.

The limited view of the root partition was achieved by
first having a blacklist of what not to include in the ch-
root for applications, and later transitioning to a
whitelist. In other words, our restricted chroot for user
applications only contains files that have been opted in.

This upgrade itself also gave us a chance to find places
where we weren't fully hermetic like we should have
been.

2. How we did updates

Because had decoupled the booting OS from the appli-
cations running on top, the actual OS saw a minimal
amount of updates. Updates were mostly security up-
dates for bugs that did potentially affect us. From time
to time we also needed a new feature that was added in
the userland tools that we used. In other words OS up-
dates were few and far in between and done only on
demand, . This is how we ended up still running some-
thing that was still mostly Red Hat 7.1 after about 10
years, managed by 2 or fewer people. In some ways,
we pushed the “if it ain't broke, don't fix it” motto as
far as we could.

2.1. Server image updates

We effectively had a filesystem image that got synced
to a master machine, new packages were installed and
the new image was snapshotted. We had scripts to store
the new filesystem snapshot in Perforce, one of our

source control systems, and allow for crude diffing be-
tween the two images. The new golden image was then
pushed to test machines, had to pass regression tests,
and pushed to a test cluster, eventually with some live
traffic. When the new image has seen enough testing, it
is pushed slowly to the entire fleet.

2.2. Dealing with filesystem image updates

After dealing with the obvious issues of excluding ma-
chine specific config files, and logs from full filesys-
tem syncs, the biggest difference is dealing with pack-
age postinstalls. We removed most of them since any-
thing that is meant to run differently on each machine
doesn't work with a golden image that is file-synced.

Examples:
• Running ldconfig after a library change is ok.
• Creating files in postinstall works, but is undesirable

since those don't show up in the package file list.
• For the case of files like ssh host keys, it's obviously

bad to create a single host key that gets snapshotted
and synced everywhere.

• Re-running lilo after updating lilo.conf would not
work.

• Restarting daemons doesn't work either.
• Many postinstalls have code to deal with cleaning up

for upgrades that weren't relevant to us, so they
could be ignored or removed.

We dealt with postinstalls that were necessary on a
case by case basis and we used our filesystem sync
post push triggers that restart daemons or re-install lilo
boot blocks after the relevant config files or binaries
were updated.

2.3. Testing software before doing image
updates

We wrote a test-rpm-install/test-deb-install script that
takes a clean machine, installs the package, and gets a
before/after snapshot of the entire filesystem. This al-
lowed us to verify what gets added/removed to the
filesystem, as well as review unix permission changes,
and size increases. We always fought software bloat,
which is how we managed to keep a small boot image
after years of evolution (it actually shrunk in size over
time as bloat was identified and removed).

Software engineers of course have mandated code re-
views and unit tests for their software. Once those are
done for a change, we build an image with just the new
package and send it to our regression tester. The regres-
sion tester runs on a sample of our different platforms,
applies the update without rebooting, and ensures that
critical daemons and services continue to work after

the update. Once that works, the machine is rebooted,
the services checked again, after which the machine is
rebooted first cleanly, and then a second time as a crash
reboot. If this all passes, the image is then reverted, we
make sure daemons do not misbehave when down-
graded (this can happen if the old code cannot deal
with state files from the new code), and the down-
graded image is then rebooted to make sure everything
comes back up as expected.

While this test suite is not foolproof, it has found a fair
amount of bugs, and ideally let the software submitter
find problems before submitting the package for inclu-
sion in the next image cut.

2.4. Reviewing image updates before de-
ployment, and test deployment.

We start with the old image's files checked into Per-
force (Perforce was mostly chosen because it was our
main already in use source control system at the time).
Metadata was stored into a separate file that wasn't
much reviewable (dev nodes, hardlinks, permissions,
etc...), but we had a reviewer friendly ls -alR type file
list to review permission and owner changes.

Image build input was a list of pre-approved packages
to update with package owners providing their own
testing notes, and features they're looking at adding.
They got installed on a test machine, and the output
was a new filesystem image where Perforce allowed
reviewing diffs of ASCII files, and we could review
changes in binary sizes as well as file permissions.
From there, if approved, the image was sent to a pool
of early test machines, and deployed slowly fleet-wide
if no one complained about regressions.

2.5. Admin and debugging considerations

While the focus of this paper is on distribution manage-
ment and upgrades, there are a few things worth noting
related to management of headless machines and de-
bugging boot issues. We have serial consoles on some
test machines, but it's not worth the price on all ma-
chines. As a result we use bootlogd to capture boot
messages without requiring the much heavier and
buggy plymouth. We also start a debug sshd before the
root filesystem is fsck'ed and remounted read-write.
That way we can easily probe/debug machines that
aren't rebooting properly or failing to fsck their root
filesystem.

When you have so many machines, you want to keep
the init system simple and dependable. Whenever pos-
sible we want all our machines to behave the same. As
a result, we stuck with normal init, and looked at De-
bian's insserv and startpar for simple dependency boot-

ing that we can set in stone and review at image cre-
ation time. Both upstart and systemd require way too
many moving pieces and introduce boot complexity
and unpredictability that was not worth the extra boot
time they could save.

While shaving a few seconds of boot isn't that impor-
tant to us, we do save reboot time by avoiding double
reboots when the root filesystem needs repair, and do
so by doing a pivot-root to an initramfs with busybox,
release the root filesystem, fsck it, and then pivot-root
back to it to continue normal boot.

2.6 This worked amazingly well over time,
but it had many issues

• Like is often the case, our system was not carefully
thought out and designed from the ground up, but
just a series of incremental “we have to fix this now”
solutions that were the best the engineers with lim-
ited time could do at the time.

• Our entire distribution was really just a lot of over-
layed patches on top of a Red Hat 7.1 live server
snapshotted almost 10 years ago.

• A lot of software was still original Red Hat 7.1 and
we had no good way to rebuild it on a modern sys-
tem. Worse, we just assumed that the binaries we
had were indeed built from the original Red Hat
source.

• The core of our distribution was now very old, and
we knew we couldn't postpone upgrading it forever,
but had no good plan for doing so.

3.0. Upgrade Plan

3.1 Which distribution?

Back in the days, we wasted too much time building
open source software as rpms, when they were avail-
able as debs. As a result, we were not very attached to
Red Hat due to the lack of software available in rpm
form vs what was available in Debian. We had already
switched away from Red Hat on our Linux worksta-
tions years prior for the same reason (our workstations
are running a separately maintained linux distribution
because they have different requirements and tradeoffs
than our servers do) Back then, Red Hat 9 had 1,500
packages vs 15,000 in Debian. Today Fedora Core 18
has 13,500 vs 40,000 in Debian testing. Arguably Red
Hat fares better today than it did then, but still remains
inferior in software selection.

As a result, ProdNG, our Linux distribution built from
source, was originally based off Ubuntu Dapper. At the
time Ubuntu was chosen because we were also using it

on our workstations. Later on, we switched to straight
Debian due to Ubuntu introducing several forced com-
plexities that were not optional and not reliable when
they were introduced, like upstart and plymouth.

3.2 ProdNG Design

Richard Gooch and Roman Mitnitski, who did the orig-
inal design for the new distribution came up with these
design points to address the limitations of our existing
distribution:

• Self hosting.
• Entirely rebuilt from source.
• All packages stripped of unnecessary dependencies

and libraries (xml2, selinux library, libacl2, etc..)
• Less is more: the end distribution is around 150MB

(without our custom bits). Smaller is quicker to
sync, re-install, and fsck.

• No complicated upstart, dbus, plymouth, etc. Tried
and true wins over new, fancy and more complex,
unless there is measurable benefit from the more
complex version.

• Newer packages are not always better. Sometimes
old is good, but only stay behind and fork if really
necessary. On the flip side, do not blindly upgrade
just because upstream did.

• Hermetic: we create a ProdNG chroot on the fly and
install build tools each time for each new package
build.

• Each image update is built by reassembling the en-
tire distribution from scratch in a chroot. This means
there are no upgrades as far as the package manage-
ment is concerned, and no layers of patches on top
of a filesystem that could have left-over forgotten
cruft.

3.3 Upgrade Plan

Once we had a ProdNG distribution prototype that was
booting, self-hosting, and ready to be tested, we all re-
alized that switching over would be much harder than
planned.

There was no way we could just roll out a brand new
distribution that was 100% different from the old one,
with software that was up to 10 years newer, and hope
for the best. On top of that, our distribution contains
our custom software that is required for new hardware
bringup, or network changes, so we could not just have
paused updates to the old distribution for months while
we very slowly rolled out the new one. Cycles of find a
bug, pause the rollout or revert, fix the bug (either in
the distribution, or in the software that relied on the be-
havior of the old one), and try again, could have poten-
tially lasted for months.

It could have been possible with a second team to
maintain the old production image in parallel and at
each review cycle build 2 distributions, but this had
many problems. To list just a few:

• Double the review load, but it was obviously not de-
sirable, nor really achievable with limited staffing.

• Would we really want to have a non-uniform setup
in production for that long? That's not going to make
debugging easy in case we notice failures in produc-
tion and for months we'd now first have to worry
about whether “Is it a ProdNG related problem, or a
distribution independent problem?”. Our monitoring
tools expect the same distribution everywhere, and
weren't designed to quickly categorize errors based
on ProdNG or not ProdNG. This could have been
done with a lot of work, but wasn't deemed a good
use of time when there was a better alternative (ex-
plained below).

• With one distribution made with rpms, while the
other one is dpkg, using totally different build rules
and inter package dependencies, our package owners
would also have a lot more work.

• While it's true that we have few internal users who
depend on the distribution bits, that small number,
from people working on the installers, and people
writing software managing machine monitoring,
hardware, and software deployment are still a size-
able amount of people (more than just a handful we
can sync with or help individually if we
change/break too many things all at once).

One motto at Google is that one team should not create
a lot of work for other teams to further their own
agenda, unless it's absolutely unavoidable and the end
goal is worth it. At the time, we were not able to make
a good enough case about the risk and work we would
have introduced. In hindsight, it was a good call, the
switch if done all at once, would have introduced way
too many problems that were manageable handled one
by one over time, but not as much if thrown around all
the same time.

Around that time, Roman had to go back to another
project, and with no good way to push ProdNG for-
ward due to the risk of such a big change, and impact
on other internal teams, it stalled.

3.4 The seemingly crazy idea that worked

Later, at the time I joined the team working on the pro-
duction image, Richard Gooch and I sat down to list
the requirements for a successful upgrade:

• We need to keep all the machines in a consistent
state, and only stay with 2 images: the current/old
one and the new one being pushed.

• If flag day there must be, it must be as short a day as
possible.

• Service owners should not notice the change, nor
should their services go down.

• rpm vs dpkg should be a big switch for us, the main-
tainers, but not the server users.

• There are just too many changes, from coreutils to
others, for the jump to be small enough to be safe.

• And since we can't have a big jump, we can't jump at
all.

Richard came up with the idea of slowly feeding our
ProdNG distribution into our existing production im-
age, a few packages at a time during each release cycle.
Yes, that did mean feeding debs into an rpm distro.

To most, it likely sounded like a crazy idea because it
was basically akin to upgrading Red Hat 7.1 to Fedora
Core 16, a totally unsupported and guaranteed to break
upgrade, but also switching from rpm to dpkg in the
process, and on live machines.

An additional factor that made this idea “crazy” is that
our ProdNG packages were based on libc 2.3.6
whereas our production image was based on libc 2.2.2,
thus ProdNG binaries would simply not run on the old
image, and it was unsafe to upgrade the system libc
without recompiling some amount of its users. Richard
had a key insight and realized that binary patching the
ProdNG binaries would allow them to run on the old
image. Since the original ProdNG prototype was devel-
oped and shelved, the production image had acquired a
hermetic C library for the use of applications outside of
the OS (this allowed applications to be use a libc, and
later among several available, without relying on the
one from the OS).

At the time, his hermetic C library was also based on
libc 2.3.6 and thus ProdNG binaries could use it as
long as the run-time linker path in the ELF header was
binary patched with a pathname of the same length.

Since doing unsupported live upgrades has been a side
hobby of mine since Red Hat 2.1, including switching
binary formats from zmagic to qmagic (libc4), then
ELF with libc5, and finally glibc with libc6, I didn't
know how long it would take, but I figured this
couldn't be any worse and that I could make it happen.

3.5 Implementing the slow upgrade

By then, ProdNG was still self hosting, and could build
new packages, so Richard wrote an alien(1) like pack-
age converter that took a built ProdNG package and
converted it to an rpm that would install on our current
production image (this did include some sed hackery to

convert dependency names since Debian and Red Hat
use different package names for base packages and li-
braries that are required for other packages to install),
but overall it was not that complicated. The converter
then ran the binary patcher described above, and ran an
ugly script I wrote to turn Debian changelogs into Red
Hat ones so that package upgrades would show ex-
pected changelog diffs for the reviewers.

Because by the time I joined to help the production im-
age group, the ProdNG build had been stale for a cou-
ple of years, I started by refreshing ProdNG, and pack-
age by package, upgrading to more recent source if ap-
plicable, stripping all the new features or binaries we
didn't need, and feeding the resulting package as a nor-
mal rpm package upgrade in the next production image
release.

From there, I looked at our existing binaries, and
checked whether they would just work if libc was up-
graded and they weren't recompiled. Most passed the
test without problem, while a few showed
Symbol `sys_siglist' has different size in

shared object, consider relinking

The other issue was that some binaries were statically
linked, and those have hardcoded pathnames to libnss
libraries, which were the ones we were trying to re-
move. Having non matching libc and libnss also caused
those binaries to fail, which wasn't unexpected. This
problem was however quickly solved by removing the
old libc altogether and repointing ld-linux.so to the new
libc. I then added a few symlinks between the location
of the libnss libs from the old libc to the ones from the
new libc.

Note that we had to run with this dual libc configura-
tion for a while since we still had a self imposed rule of
only upgrading a few packages at each cycle. Therefore
we pushed fixed packages a few at a time until we were
ready one day to remove the old libc and replace it with
symlinks to the new one.

3.6 If you can delete it, you don't have to
upgrade it

Despite of the fact that our image was a snapshot of a
live Red Hat 7.1 server install, it contained a lot of
packages that didn't belong in a base server install, or
packages that we didn't need for our uses.

Distributions with crazy dependency chains have only
been getting worse over time, but even in the Red Hat
7.1 days, dependencies in Red Hat were already far
from minimal. Some were pure cruft we never needed
(X server, fonts, font server for headless machines
without X local or remote, etc...). Next, I looked for all

things that made sense to ship as part of RH 7.1, but
were useless to us (locales and man pages in other lan-
guages, i18n/charmaps, keyboard mappings, etc...).

After that, I looked for the next low hanging fruit and
found libraries nothing was using anymore (left over
from prior upgrade, or shipped by default, but not used
by us). For some libraries, like libwrap, I was able to
remove them after upgrading the few packages that
used them, while omitting the library from their builds.

When it was all said and done, I had removed 2/3rd of
the files we had in the initial image, and shed about
50% of the disk space used by the Linux image (not
counting our custom in-house software).

3.7 The rest of the upgrade

What didn't get deleted, had to be upgraded however.
Once the libc hurdle was past, it was a lot of painstak-
ing work to deal with each weird upgrade differently,
and qualify each big software jump for things like cron,
or syslog, to be sure they would be safe and not fix a
bug that we were relying on. Just upgrading rsync from
2.x to 3.x took 4 months of work because of semantics
that changed in the code in how it handled permission
syncs, and our dependence on the old behavior.

Our distribution was so old that it didn't even have
coreutils. It had fileutils + textutils + sh-utils, which
got replaced with fairly different binaries that unfortu-
nately were not backward compatible so as to be more
POSIX compliant. Upgrading just that took a lot of ef-
fort to scan all our code for instances of tail +1, or
things scanning the output of ls -l. In the process, mul-
tiple utilities got moved from /bin to /usr/bin, or back,
which broke some scripts that unfortunately had hard-
coded paths.

Aside from a couple of upgrades like coreutils, there
weren't too many upgrades with crazy dependency
chains, so it was not a problem to upgrade packages a
few at a time (5 to 10 max each time).

On some days, it was the little things. The day I re-
moved /etc/redhat-release, it broke a bunch of java
code that parsed this file to do custom things with fonts
depending on the presence of that file. At Google, who-
ever touched something last is responsible for the
breakage, even if the bug wasn't in that change, so that
typically meant that I had to revert the change, get the
right team to fix the bug, wait for them to deploy the
fix on their side, and then try again later.

3.8 Dealing with left over junk

Because our original image was a full filesystem image
that got snapshotted in Perforce, we ended up with files
that were not runtime created, and not part of any pack-
age either. We had junk that we didn't always know the
source of, or sometimes whether it was safe to remove.

I ended up finding the expected leftover files (.rpm-
save, old unused files), lockfiles and logfiles that
shouldn't have been checked in and /etc/rcxx initscript
symlinks. Any actual program that wasn't part of a
package, was identified and moved to a package.

Then, I had to scan the entire filesystem for files that
were not in a package, work through what was left on
the list and deal with the entries on an case by case ba-
sis.

That said, the goal was never to purge every single last
trace of Red Hat. We have some Red Hat pathnames or
functions left over to be compatible with things that ex-
pect Red Hat and aren't quite LSB compliant. We only
removed Red Hat specific bits (like rpm itself) when it
was simple to do so, or because maintaining them long
term was going to be more work than the cost of re-
moval.

3.9 A difficult problem with /etc/rc.d/...

Back in the day (mid 1990's) someone at Red Hat mis-
read the linux filesystem standard and put the
initscripts in /etc/rc.d/rc[0-6].d and /etc/rc.d/nit.d in-
stead of /etc/rc[0-6].d, as implemented in other linux
distributions including Debian. Migrating to Debian
therefore included moving from /etc/rc.d/init.d to
/etc/init.d.

Unfortunately I found a bug in our syncing program
when switching from /etc/rc.d/init.d (Red Hat) to
/etc/init.d (Debian): when the image syncer applied a
new image that had /etc/init.d as the directory and
/etc/rc.d/init.d as the compatibility symlink, that part
worked fine, but then it also remembered that
/etc/rc.d/init.d was a directory in the old image that got
removed, and by the time it did a recursive delete of
/etc/rc.d/init.d, it followed the /etc/rc.d/init.d symlink it
had just created and proceeded to delete all of
/etc/init.d/ it also had just created.

The next file sync would notice the problem and fix it,
but this left machines in an unbootable state if they
were rebooted in that time interval and this was not an
acceptable risk for us (also the first file sync would
trigger restarts of daemons that had changed, and since
the initscripts were gone, those restarts would fail).

This was a vexing bug that would take a long time to
fix for another team who had more urgent bugs to fix

and features to implement. To be fair, it was a corner
case that no one had ever hit, and no one has hit since
then.

This was a big deal because I had to revert the migra-
tion to /etc/init.d, and some of my coworkers pushed
for modifying Debian forever to use /etc/rc.d/init.d.
Putting aside that it was a bad hack for a software bug
that was our fault, it would have been a fair amount of
work to modify all of Debian to use the non standard
location, and it would have been ongoing work forever
for my coworkers after me to keep doing so. I also
knew that the changes to initscripts in Debian would
force us to have local patches that would cause subse-
quent upstream changes to conflict with us, and require
manual merges.

So, I thought hard about how to work around it, and I
achieved that by keeping Debian packages built to
use /etc/init.d, but by actually having the real filesys-
tem directory be /etc/rc.d/init.d while keeping
/etc/init.d as a symlink for the time being. This was
done by setting those up before Debian packages were
installed in our image builder. Dpkg would then install
its files in /etc/init.d, but unknowing follow the sym-
link and install them in /etc/rc.d/init.d.

This was ok, but not great though because we'd have a
mismatch between the Debian file database and where
the files really were on disk, so I worked further to re-
move /etc/rc.d/init.d.

We spent multiple months finding all references to
/etc/rc.d/init.d, and repoint them to /etc/init.d. Once this
was finished, we were able to remove the image build
hack that created /etc/rc.d/init.d.

The bug did not trigger anymore because our new im-
age did not have a /etc/rc.d/init.d compatibility sym-
link, so when the file syncer deleted the /etc/rc.d/init.d
directory, all was well.

3.10 Tracking progress

Our converted ProdNG packages had a special exten-
sion when they were converted to RPMs, so it was triv-
ial to use rpm -qa, look at the package names and see
which ones were still original RPMs and which ones
were converted debs.

I then used a simple spreadsheet to keep track of which
conversions I was planning on doing next, and for
those needing help from coworkers who had done cus-
tom modifications to the RPMs, they got advance no-
tice to port those to a newer Debian package, and I
worked with them to make a ProdNG package to up-
grade their old RPM. They were then able to monitor
the upgrade of their package, and apply the relevant
tests to ensure that the package still did what they

needed. This allowed porting our custom patches and
ensuring that custom packages were upgraded carefully
and tested for their custom functionality before being
deployed (we do send out patches upstream when we
can, but not all can be accepted).

3.11 Communication with our internal
users

We used different kinds of internal mailing lists to
warn the relevant users of the changes we were about
to make. Some of those users were the ones working on
the root partition software, others were our users run-
ning all the software that runs google services inside
the chroots we provide for them, and we also warned
the people who watch over all the machines and service
health when we felt we were making changes that were
worth mentioning to them.

All that said, many of those users also had access to
our release notes and announcements when we pushed
a new image, and quickly knew how to get image diffs
when debugging to see if we made an image change
that might have something to do with a problem they
are debugging.

4.0 Getting close to swichover time

After almost 3 years of effort (albeit part time since I
was also working on maintaining and improving the
current rpm based image, working with our package
owners, as well as shepherding releases that continued
to go out in parallel), the time came when everything
had been upgraded outside of /sbin/init and Red Hat
initscripts.

Checking and sometimes modifying Debian initscripts
to ensure that they produced the same behavior that we
were getting from our Red Hat ones took careful work,
but in the end we got ProdNG to boot and provide the
same environment as our old Red Hat based image. To
make the migration easier, I fed shell functions from
Red Hat's /etc/init.d/functions into Debian's
/lib/lsb/init-functions and symlinked that one to
/etc/init.d/functions. This allowed both Red Hat and
Debian initscripts from 3rd party packages to just
work.

4.1 Reverse conversions: rpms to debs

By then, a portion of our internal packages had been
converted from rpms to debs, but not all had been, so
we used reverse converter that takes rpms, and converts
them to debs, with help from alien. The more tedious
part was the converter I wrote to turn mostly free form
Red Hat changelogs into Debian changelogs which

have very structured syntax (for instance, rpms do not
even require stating which version of the package a
changelog entry was for, and if you do list the version
number, it does not check that the latest changelog en-
try matches the version number of the package). Rpm
changelogs also do not contain time of day, or time-
zones (I guess it was Raleigh-Durham Universal
Time), so I just had to make those up, and problems
happen if two rpm releases happened on the same day
with no time since it creates a duplicate timestamp in
the debian changelog. Some fudging and kludges were
required to fix a few of those.

4.2 Time to switch

By then, ProdNG was being built in parallel with the
rpm production image and they were identical outside
of initscripts, and rpm vs dpkg. With some scripting I
made the ProdNG image look like a patch image up-
grade for the old image, and got a diff between the two.
We did manual review of the differences left between 2
images (file by file diff of still 1000+ files). There were
a few small differences in permissions, but otherwise
nothing that wasn't initscripts or rpm vs dpkg database
info.

It then became time to upgrade some early test ma-
chines to ProdNG, make sure it did look just like the
older image to our internal users, and especially ensure
that it didn't have some bugs that only happened on re-
boot 0.5% of the time on just one of our platforms.
Then, it started going out to our entire fleet, and we
stood around ready for complaints and alerts.

4.3 Switch aftermath

Early deployment reports found one custom daemon
that was still storing too much data in /var/run. In Red
Hat 7.1, /var/run was part of the root filesystem, while
in ProdNG it was a small tmpfs. The daemon was re-
built to store data outside of /var/run (we have custom
locations for daemons to write bigger files so that we
can control their sizes and assign quotas as needed, but
this one wasn't following the rules).

Most of the time was actually spent helping our pack-
age owners convert their rpms to debs and switching to
new upload and review mechanisms that came with
ProdNG since the image generation and therefore re-
view were entirely different.

As crazy as the project sounded when it started, and
while it took awhile to happen, it did. Things worked
out beautifully considering the original ambition.

4.4 Misc bits: foregoing dual package sys-
tem support

We had code to install rpms unmodified in our ProdNG
deb image, and even have them update the dpkg file
list. We however opted for not keeping that complexity
since dual package support would have rough edges
and unfortunate side effects. We also wanted to entice
our internal developers to just switch to a single system
to make things simpler: debs for all. They are still able
to make rpms if they wish, but they are responsible for
converting them to debs before providing them to us.

As a side result, we were able to drop another 4MB or
so of packages just for just rpm2cpio since rpm2cpio
required 3-4MB of dependencies. I was able to find a
20 line shell script replacement on the net that did the
job for us. This allowed someone to unpack an old
legacy rpm if needed while allowing me to purge all of
rpm and its many libraries from our systems.

Debian made a better choice by having an archive sys-
tem that can be trivially unpacked with ar(1) and tar(1)
vs RPM that requires rpm2cpio (including too many
rpm libraries) and still loses some permissions which
are saved as an overlay stored inside the RPM header
and lost during rpm2cpio unpacking.

4.5 No reboots, really?

I stated earlier that the upgrades we pushed did not re-
quire to reboot servers. Most services could just be
restarted when they got upgraded without requiring a
reboot of the machine.

There were virtually no times where we had code that
couldn't be re-exec'ed without rebooting (even
/sbin/init can re-exec itself), that said our servers do get
occasionally rebooted for kernel ugprades done by an-
other team, and we did benefit from those indirectly for
cleaning up anything in memory, and processed that
didn't restart, if we missed anyway.

5.0 ProdNG Design Notes

While it's not directly related to the upgrade procedure,
I'll explain quickly how the new image is designed.

5.1 ProdNG package generation

Since one of the goals of our new distribution was to be
self-hosting, and hermetic, including building a 32bit
multiarch distribution (32bit by default, but with some
64bit binaries), it made sense to build ProdNG pack-
ages within a ProdNG image itself. This is done by
quickly unpacking a list of packages provided in a de-
pendencies file (mix of basic packages for all builds,

and extra dependencies you'd like to import in that im-
age to build each specific package). Debian provides
pbuilder which also achieves that goal, but our method
of unpacking the system without using dpkg is much
faster (1-2 minutes at most), so we prefer it.

We use the debian source with modifications to
debian/rules to recompile with fewer options and/or ex-
clude sub-packages we don't need. We then have a few
shell scripts that install that unpacked source into a
freshly built ProdNG image, build the package, and re-
trieve/store the output. You get flexibility in building a
package in an image where for instance libncurses is
not available and visible to configure, while being
present in the image currently deployed (useful if you'd
like to remove a library and start rebuilding packages
without it).

After package build, we have a special filter to prune
things we want to remove from all packages (info
pages, man pages in other languages, etc...) without
having to modify the build of each and every package
to remove those. The last step is comparing the built
package against the previous package, and if files are
identical, but the mtime was updated, we revert the
mtime to minimize image review diffs later.

5.2 ProdNG image generation

This is how we build our images in a nutshell: each
new image to push is generated from scratch using the
latest qualified packages we want to include into it
(around 150 base Linux packages).

The image is built by retrieving the selected packages,
unpacking them in a chroot (using ar and untar), and
chrooting into that new directory. From there, the im-
age is good enough to allow running dpkg and all its
dependencies, so we re-install the packages using dpkg,
which ensures that the dpkg database is properly
seeded, and the few required postinstall scripts do run.
There are other ways to achieve this result (deboot-
strap), but because our method runs in fewer than 10
minutes for us and it works, we've stuck with it so far.

As explained, package builds revert mtime only
changes, and squash binary changes due to dates (like
gzip of the same man page gives a new binary each
time because gzip encodes the time in the .gz file). We
have a similar patch for .pyc files. As a result of those
efforts, rebuilding an image with the same input pack-
ages is reproducible and gives the same output.

5.3 ProdNG image reviews

The new ProdNG images are not checked in Perforce
file by file. We get a full image tar.gz that is handed off
to our pusher and reviews are done by having a script
unpack 2 image tars, and generate reviewable reports
for it:

• file changes (similar ls -alR type output)

• which packages got added/removed/updated

• changelog diffs for upgraded packages

• All ASCII files are checked into Perforce simply so
that we can track their changes with Perforce review
tools.

• compressed ASCII files (like man pages or docs) are
uncompressed to allow for easy reviews.

• Other binary files can be processed by a plugin that
turns them into reviewable ASCII.

6. Lessons learned or confirmed.

1. If you have the expertise and many machines, main-
taining your own sub Linux distribution in house
gives you much more control.

2. At large scales, forcing server users to use an API
you provide, and not to write on the root FS defi-
nitely helps with maintenance.

3. File level syncing recovers from any state and is
more reliable than other methods while allowing for
complex upgrades like the one we did.

4. Don't blindingly trust and install upstream updates.
They are not all good. They could conflict with your
config files, or even be trojaned.

5. If you can, prune/remove all services/libraries you
don't really need. Fewer things to update, and fewer
security bugs to worry about.

6. Upgrading to the latest Fedora Core or Ubuntu from
6 months ago is often much more trouble than it's
worth. Pick and chose what is worthwhile to up-
grade. Consider partial upgrades in smaller bits de-
pending on your use case and if your distribution is
flexible enough to allow them.

7. Prefer a distribution where you are in control of
what you upgrade and doesn't force you into an all
or nothing situation. Ubuntu would be an example to
avoid if you want upgrade flexibility since it directly
breaks updates if you jump intermediate releases.
Debian however offers a lot more leeway in upgrade
timing and scope.

8. Keep your system simple. Remove everything you
know you don't need. Only consider using upstart or
systemd if you really know how their internals, pos-

sible race conditions, and are comfortable debugging
a system that fails to boot.

References

As you may imagine, we didn't really have much exist-
ing work we were able to draw from. Alien(1) from
Joey Hess definitely helped us out for the rpm to deb
conversions, and here is the URL to the rpm2cpio I
found to replace our 4MB of binaries:

https://trac.macports.org/attachment/ticket/33444/rpm2
cpio

Acknowledgements

I need to single out my coworkers who helped design
ProdNG: Richard Gooch and Roman Mitnitski for de-
signing and implementing the first ProdNG images
built from source and self-hosting. Richard Gooch also
gets the credit for coming up with the initial design of
feeding ProdNG in our existing file-synced image
package by package by converting ProdNG debs to
rpms, as well as reviewing this paper.

Joey Hess, Debian maintainer of debhelpers and man
other packages related to dpkg, is also the maintainer
of alien(1). He was helpful on multiple occasions with
dpkg/debhelper related questions when I was doing
complicated conversions. Joeh also helped me include
a cleaner version of a patch I had to write to properly
convert some unix ownership and permissions from
rpm to deb that alien(1) was failing to conver at the
time.

Next, I would like to thank Tom Limoncelli for review-
ing this paper as well as encouraging me to write it in
the first place. He also gets credit for contributing the
introduction which he was able to write with an out-
sider's point of view.

Finally, I owe thanks to the LISA reviewers for their
review comments, and specifically Andrew Lusk for a
careful and thorough final review of this paper.

Of course, I also need to thank all the coworkers at
Google who helped me in various ways with this
project, or doing our day to day maintenance and re-
lease work.

Availability

This document is available at the USENIX Web site.

https://trac.macports.org/attachment/ticket/33444/rpm2cpio
https://trac.macports.org/attachment/ticket/33444/rpm2cpio

