
http://marc.merlins.org/linux/talks/2015/Btrfs-LCA2015/

So, why am I talking about Btrfs?

• I've been using linux and its different filesystems since 1993

• I've have been using ext2/ext3/ext4 for 20 years.

• But I worked at Network Appliance in 1997, and I've grown

hooked to snapshots.

• LVM snapshots never worked well on linux, and have great

performance problems (I've seen I/O speed go down to 2MB/s).

• I also like using partitions to separate my filesystems, but LVM

partitions are not ideal and add the overhead of using LVM.

• I wanted this badly enough that I switched my laptop to btrfs 3

years ago, and more machines since then.

Why Should You Consider Btrfs?

• Copy On Write (COW) allows for atomic transactions without a

separate journal

• Snapshots are built in the filesystem and cost little performance,

especially compared to LVM.

• cp –reflink=always copies within and between subvolumes without

duplicating data (ZFS doesn't support this).

• Metadata is redundant and checksummed. Data is checksummed

too (ext4 only has experimental metadata checksums

http://goo.gl/tmyAS3).

• If you use docker, Btrfs is your best underlying filesystem.

• Diffs after upgrades and rollbacks like Suse offers

http://goo.gl/tmyAS3

Why Should You Consider Btrfs? (2)

• Raid 0, 1, 5, and 6 are also built in the filesystem

• You won't need multiple partitions or LVM Logical Volumes

anymore, so you'll never have to resize a partition.

• File compression is also built in (lzo or zlib)

• Online background filesystem scrub (partial fsck)

• Block level filesystem diff backups (btrfs send/receive instead

of slow rsync)

• Btrfs-convert can convert ext3 to btrfs while keeping your

data, but it can fail, so backups are recommended and a

normal copy is better.

But why not use ZFS?

• ZFS is more mature than Btrfs.

• ZFS offers almost all the features that Btrfs offers, and a few

more.

• But it was licensed by SUN to be incompatible with the linux

kernel license (you can put both together yourself, but you

cannot redistribute a kernel with both).

• ZFS is fairly memory hungry, it's recommended to have

16GB of RAM and give 8GB or more to ZFS (it wasn't

designed to use the linux memory filesystem, so it uses its

own memory that can't be shared with the rest of linux).

ZFS licensing

• Oracle bought Sun which had licensing right and patents to

the original ZFS code

• Therefore Oracle could relicense the original code from

CDDL to GPL-2 and replace/get rights to the patches

submitted to open Solaris.

• It would seem a like a lot less work than writing a new

filesystem from scratch

Oracle's position on btrfs and ZFS

• Oracle's official position is

Oracle began btrfs development years before the Sun acquisition and we currently

have no interest in an “official” port of ZFS from Solaris into Linux which would

require a relicensing effort. We’d rather focus on improving btrfs which was

developed from scratch as a mainline kernel (GPLv2) next-generation filesystem.

Oracle has several developers dedicated to ongoing btrfs development, and we

support btrfs on Oracle Linux for production purposes.

• http://goo.gl/3JVHQe says:

"According to Coekaerts, porting ZFS to Linux involves a non-optimal approach that

is not native. As such, there is likely not a need to attempt to bring ZFS to Linux

since Btrfs is now around to fit the bill. "

http://goo.gl/3JVHQe

Were patents a problem with ZFS?

• Netapp sued Sun saying ZFS infringed 7 WAFL patents

http://goo.gl/PlzByI

• That said Sun attacked Netapp first http://goo.gl/L5gyX5

http://goo.gl/PlzByI
http://goo.gl/L5gyX5

Were patents a problem with ZFS?

• Apple was going to use ZFS and later dropped the idea

http://goo.gl/C5b8M5

• Around the same time Oracle starts writing Btrfs

• Chris Mason hints around 2008 that Btrfs has newer design

elements than ZFS (and WAFL), and isn't known to violate

any patents http://goo.gl/Rfzi5D http://goo.gl/qntsNq

• Netapp and Oracle agreed to end the suit privately

http://en.swpat.org/wiki/NetApp's_filesystem_patents

• Oracle may have stopped further work on ZFS as a result.

Or it could be another reason entirely...

http://goo.gl/C5b8M5
http://goo.gl/Rfzi5D
http://goo.gl/qntsNq
http://en.swpat.org/wiki/NetApp's_filesystem_patents

Be wary of ZFS for production use
• You can use ZFS and patch it against kernels on your own, but the code

needs to be maintained out of tree and patched forever.

• Vmware workstation mostly died and was replaced by virtualbox because

the vmware drivers never worked with newer kernels, and it stopped

working when you upgraded.

• Due to the CDDL being incompatible with GPLv2, a linux vendor or

hardware vendor will never be able to ship a linux distribution or hardware

device using ZFS

• As a result, you shouldn't plan on using ZFS for any product that you

might ever want to ship one day.

• It is only safe to use ZFS for internal use on something that will never ship

to others. Yet, many things that weren't meant to ship become products

one day (google search appliance for instance)

Btrfs: Wait, is it stable/safe yet?

• Oracle and Suse support Btrfs in their commercial distribution

• Basic Btrfs is mostly stable: Snapshots, raid 0, raid 1.

• It typically doesn't just corrupt itself in recent kernels (>3.1x), but it could.

Always have backups.

• 3.14.x works ok, avoid 3.15 to 3.16.1, stay one stable kernel behind.

• It changes quickly though, so use recent kernels if you can, but consider

staying a kernel or two behind for stability.

• It can get out of balance and require manual re-balancing

• Auto defrag has performance problems with journal and virtual disk image

files

• Btrfs send/receive mostly works reliably as of 3.14.x

• Raid 5 and 6 are still experimental as of 3.18

What's not there yet?

• Fsck.btrfs aka btrfsck or btrfs check –repair is still a bit incomplete

but much better in later btrfs-tools.

• But thankfully it's mostly not needed and there are other recovery

options.

• File encryption is not supported yet (can be done via dm-crypt)

• Dedup is experimental via a userland tool, and online real time

dedup hasn't been written yet

• More testing and polish, as well as brave users like you :)

Who contributes to Btrfs?

Incomplete list: https://btrfs.wiki.kernel.org/index.php/Contributors

• Facebook

• Fujitsu

• Fusion-IO

• Intel

• Linux Foundation

• Netgear

• Oracle

• Red Hat

• Strato

• Suse / Novell

• <Your company name here> :)

Who uses Btrfs in production?

• https://btrfs.wiki.kernel.org/index.php/Production_Users

• http://www.phoronix.com/scan.php?page=news_item&px=MTY0NDk

It looks like in 2014 might finally be the year we see more real-world

deployments of Btrfs in place of EXT4 or XFS. This year openSUSE 13.2

is switching to Btrfs by default for new installations as the first tier-one

Linux distribution relying upon the next-generation open-source file-

system.

• http://lwn.net/Articles/577728/ (Jon Corbet's predictions)

Btrfs will start seeing wider production use in 2014, finally, though users

will learn to pick and choose between the various available features.

http://www.phoronix.com/scan.php?page=news_item&px=MTY0NDk
http://lwn.net/Articles/577728/

Ok, great, so how do I use BTRFS?

We will look at best practices, namely:

• When things go wrong: filesystem recovery

• Btrfs scrub/log parsing

• Dmcrypt, Raid, and Compression

• Pool directory

• Historical Snapshots and backups

• What to do with out of space problems (real and not real)

• Btrfs send/receive

• Tips and tricks: cp –reflink, defragmenting, nocow with chattr

• How btrfs raid 1 works. Raid 5/6

Filesystem Recovery

 https://btrfs.wiki.kernel.org/index.php/Btrfsck explains:

• btrfs scrub to detect issues on live filesystems (but it is not a full

online fsck).

• look at btrfs detected errors in syslog

• mount -o ro,recovery to mount a filesystem with issues

• btrfs-zero-log might help in specific cases.

• btrfs restore will help you copy data off a broken btrfs filesystem.

https://btrfs.wiki.kernel.org/index.php/Restore

• btrfs check --repair, aka btrfsck is your last option if the ones above

have not worked.

https://btrfs.wiki.kernel.org/index.php/Btrfsck
https://btrfs.wiki.kernel.org/index.php/Restore

Plan for recovery before you need it

• A bug could cause your root filesystem not to be mountable

• Try passing mountopts=recovery,ro to grub/lilo

• If you use initrd, make sure it includes /sbin/btrfs and dependencies

• Also make sure initrd includes /sbin/btrfs-zero-log (debian does)

• If you use btrfs for root, have a 2nd root partition to boot from

• Test that your 2nd root partition works

• Generally on a laptop, consider having 2 drives to boot from,

especially if you use an SSD (SSDs do die unexpectedly)

legolas:~# cat /etc/initramfstools/hooks/btrfsrecover
#!/bin/sh

. /usr/share/initramfstools/hookfunctions

[x "/sbin/btrfszerolog"] && copy_exec /sbin/btrfszerolog /sbin
[x "/sbin/btrfs"] && copy_exec /sbin/btrfs /sbin

Btrfs scrub

• Run scrub nightly or weekly on all btrfs filesystems

• Even on a non RAID filesystem, btrfs usually has two copies of
metadata which are both checksummed (-m dup for mkfs.btrfs).

• Data blocks are not duplicated unless you have RAID1 or higher,
but they are checksummed

• Scrub will therefore know if your metadata is corrupted and
typically correct it on its own

• It can also tell you if your data blocks got corrupted, auto fix them if
RAID allows, or report them to you in syslog otherwise.

• Knowing that your data is corrupted is valuable, since you know
you can restore from backup (many filesystems do not give you
this information).

• More repair strategies and watching btrfs-scrub logs on my blog:
http://goo.gl/knHpM6

http://goo.gl/knHpM6

Btrfs scrub issue

How to fix a scrub that stopped half way:

gargamel:~# btrfs scrub start d /dev/mapper/dshelf1
ERROR: scrub is already running.
To cancel use 'btrfs scrub cancel /dev/mapper/dshelf1'.
gargamel:~# btrfs scrub status /dev/mapper/dshelf1
scrub status for 6358304a22344243b02d4944c9af47d7
 scrub started at Tue Apr 8 08:36:18 2014, running for 46347 seconds
 total bytes scrubbed: 5.70TiB with 0 errors
gargamel:~# btrfs scrub cancel /dev/mapper/dshelf1
ERROR: scrub cancel failed on /dev/mapper/dshelf1: not running
gargamel:~# perl pi e 's/finished:0/finished:1/' /var/lib/btrfs/* << FIX
gargamel:~# btrfs scrub status /dev/mapper/dshelf1
scrub status for 6358304a22344243b02d4944c9af47d7
 scrub started at Tue Apr 8 08:36:18 2014 and finished after 46347
seconds
 total bytes scrubbed: 5.70TiB with 0 errors
gargamel:~# btrfs scrub start d /dev/mapper/dshelf1
scrub started on /dev/mapper/dshelf1, fsid 6358304a22344243b02d
4944c9af47d7 (pid=24196)

Dmcrypt, dm-raid, and btrfs, which one comes first?

• If you use software raid, it's less work to setup
decryption of a single md raid5 device than decrypting X
underlying devices first.

• With dmcrypt on top of dm-raid5, you only need to crypt
n-1 disks of data.

• Recent kernels thread dmcrypt well enough across
CPUs

• So, you have btrfs on top of dmcrypt on top of dm-raid.

• But if you use btrfs built in raid 0, 1, 5, 6, you have to
setup a decryption of each device at boot.

Multi-device dmcrypt and btrfs

• Mounting btrfs from dmcrypted devices is more work

• First you need to decrypt all devices

• Run btrfs scan and then you can run btrfs mount

• You either use mount LABEL= or mount
/dev/mapper/cryptdev1 (give any device and the
others get auto-detected):
mount -v -t btrfs -o compress=zlib,noatime LABEL=$LABEL /mnt/btrfs_pool
mount -v -t btrfs -o compress=lzo,noatime /dev/mapper/cryptdev1 /mnt/btrfs_pool

• You can use my script to automate this:
start-btrfs-dmcrypt available at http://goo.gl/0FI94W

http://goo.gl/0FI94W

Btrfs pool, subvolumes

• With btrfs, you don't need to create partitions anymore

• You typically create a storage pool

• In which you create subvolumes

• Subvolumes can get quotas and get snapshotted

• Think of subvolumes as resizeable partitions that can
share data blocks
mount -o compress=lzo,noatime LABEL=btrfs_pool /mnt/btrfs_pool
btrfs subvolume create /mnt/btrfs_pool/root
btrfs subvolume create /mnt/btrfs_pool/usr

• Mount with:
boot: root=/dev/sda1 rootflags=subvol=root
mount -o subvol=usr /dev/sda1 /usr
or mount -o bind /mnt/btrfs_pool/usr /usr

Btrfs subvolume snapshots

• The most appealing feature in btrfs is snapshots.

• Snapshots work on subvolumes

• You can snapshot a snapshot

• You can make a read only snapshot, or a read-write
snapshot of a read-only snapshot

legolas:/mnt/btrfs_pool1# btrfs subvolume create test
Create subvolume './test'
legolas:/mnt/btrfs_pool1# touch test/foo
legolas:/mnt/btrfs_pool1# btrfs subvolume snapshot test testsnap
Create a snapshot of 'test' in './testsnap'
legolas:/mnt/btrfs_pool1# touch testsnap/bar
legolas:/mnt/btrfs_pool1# rm test/foo
legolas:/mnt/btrfs_pool1# ls testsnap/
bar foo

Btrfs subvolume snapshots

legolas:/mnt/btrfs_pool1# btrfs subvolume show test
/mnt/btrfs_pool1/test
Name: test
uuid: 2cd10c9331a3ed42bac984f6f86215b3
Parent uuid:
Creation time: 20140503 18:41:15
Object ID: 25576
Generation (Gen):406949
Gen at creation: 406947
Snapshot(s):
 Testsnap <<<<<<<<<<<<<<

legolas:/mnt/btrfs_pool1# btrfs subvolume show testsnap/
/mnt/btrfs_pool1/testsnap
Name: testsnap
uuid: 9529d4e31c64ec4e89a07fa010a115fe
Parent uuid: 2cd10c9331a3ed42bac984f6f86215b3 <<<<<<<<<<<<<<
Creation time: 20140503 18:41:29
Object ID: 25577
Generation (Gen):406949
Gen at creation: 406948
Snapshot(s):

Snapshots are not real backups

This is probably the wrong backup strategy :)

Historical snapshots to go back in time

• You can use the script I wrote that will look at any btrfs
pool, find all the subvolumes and snapshot them
(optionally) by hour/day/week.

• See my blog post at http://goo.gl/On7CZR
drwxrxrx 1 root root 370 Feb 24 10:38 root
drwxrxrx 1 root root 370 Feb 24 10:38 root_daily_20140316_00:05:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_daily_20140318_00:05:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_daily_20140319_00:05:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_daily_20140320_00:05:00
drwxrxrx 1 root root 370 Feb 24 10:38 root_hourly_20140316_22:33:00
drwxrxrx 1 root root 370 Feb 24 10:38 root_hourly_20140318_00:05:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_hourly_20140319_00:05:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_hourly_20140320_00:05:00
drwxrxrx 1 root root 336 Feb 19 21:40 root_weekly_20140223_00:06:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_weekly_20140302_00:06:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_weekly_20140309_00:06:01
drwxrxrx 1 root root 370 Feb 24 10:38 root_weekly_20140316_00:06:01

http://goo.gl/On7CZR

Atime, relatime vs snapshots

• Atime forces the system to write to each inode every time
you update a file

• Relatime (now the default with recent kernels) does this more
intelligently and less often, but at least once a day, that's too
much still.

• Unfortunately if you use snapshots, this creates a lot of
writes and differing data each time you access files and
cause an atime update

• As a result, if you use snapshots, noatime is strongly
recommended.

Help, I really ran out of space

• Btrfs fi show will tell you if your device is really full.

• Here the device is full (needs a rebalance) and the FS almost full.

• First thing to do if you have historical snapshots is to delete the
oldest ones

• If you just copied 100G without –reflink and deleted the copy, you
may have to delete all historical snapshots

• If you delete snapshots, it may take minutes for btrfs to do
garbage collection and free space to come back.

• Unfortunately it's currently difficult to know how much space each
snapshot takes (since the space is shared and deleting a single
snapshot may not reclaim it)

gandalfthegreat:~# btrfs fi show
Label: 'btrfs_pool1' uuid: 873d526ce9114234af1b239889cd143d
 Total devices 1 FS bytes used 214.44GB
 devid 1 size 231.02GB used 231.02GB path /dev/dm0

Help, btrfs says I ran out of space, but I didn't.

• Currently btrfs has issues where it needs to have its
chunks rewritten to rebalance space (btrfs filesystem
df /mnt and btrfs fi show both agree there is free space)

• Counting free space is tricky, see
https://btrfs.wiki.kernel.org/index.php/FAQ#Raw_disk_usage

• More generally I've written a page explaining how to
deal with filesystems are full (but usually aren't really):
http://goo.gl/NU42P0

• As of 3.18+ btrfs is doing more work to auto rebalance
data/metadata chunks for you.

https://btrfs.wiki.kernel.org/index.php/FAQ#Raw_disk_usage
http://goo.gl/NU42P0

Btrfs built in compression

• mount -o compress=lzo is fast and best for ssd

• mount -o compress=zlib compresses better but is
slower.

• Compression is a mount option that affects files written
after the mount

• If you change your mind after the fact, you can use btrfs
balance to rewrite data blocks which recompresses
them in the process.

Defragmentation and NOCOW

• If you have a virtual disk image, or a database file that gets
written randomly in the middle, Copy On Write is going to
cause many fragments since each write is a new fragment.

• My virtualbox image grew 100,000 fragments quickly.

• You can turn off COW for specific files and directories with
chattr +C /path (new files will inherit this).

• btrfs filesystem defragment vbox.vdi could take hours

• cp –reflink=never vbox.vdi vbox.vdi.new; rm vbox.vdi
is much faster

• btrfs filesystem defragment can be used to recompress files
while defragmenting, but can be very slow if you have
snapshots.

Block deduplication and cp --reflink

• After the fact block deduplication is currently
experimental: https://github.com/g2p/bedup

• Inline deduplication is not ready yet, but still planned.

• cp –reflink /mnt/src /mnt/dest duplicates a file while
reusing the same data blocks, but allows you to modify
dest (can't do this with hardlinks)

• cp –reflink /mnt/btrfs_pool/subvol1/src
/mnt/btrfs_pool/subvol2/dest lets you copy/move a file
across subvolumes without duplicating data blocks.

https://github.com/g2p/bedup

Btrfs send/receive

• This is a killer app for btrfs: rsync is inefficient and slow when
you have many files to copy.

• This is where btrfs send/receive come in.
• btrfs send vol | ssh host “btrfs receive /mnt/pool”

• Later copies only send a diff between snapshots, this diff is
computed instantly when rsync could take an hour or more to
generate a list of diffs:
btrfs send p vol_new_ro vol_old_ro | btrfs receive

/mnt/pool

• It's a bit hard to setup, so I wrote a script you can use:
http://goo.gl/OLkbjT

http://goo.gl/OLkbjT

Finale: btrfs send/receive to replicate server images

• Last year I gave a talk on how google does live server
upgrades by doing file level updates http://goo.gl/CxedK

• We use a custom rsync like system that was tricky to write
and generates a lot of I/O

• Instead, you can use btrfs send/receive to replicate a golden
image in a subvolume to all your servers

• Local changes are symlinked to a local FS or bind mounted
on a file by file basis.

• Once the new subvolume has the new image, you can reboot
to it and/or use kexec for a faster reboot cycle.

• btrfs-diff shows most files changed, use this to sync changes
with cp –reflink instead of reboot http://goo.gl/fkLxAu

• Improve btrfs send/receive to only show files changed.

http://goo.gl/CxedK
http://goo.gl/fkLxAu

Backing up my laptop SSD to internal HD hourly

• SSDs can die suddenly with no warning (3 times for me)

• Back them up at least daily, or even hourly

• Rsync backups are slow

• Perfect use case for btrfs send/receive for quick
incremental backups

• Destination backup is read only snapshot, but my script
makes a 2nd R/W snapshot with a symlink pointing to it

• That way if my SSD entirely dies, I can still boot from
my backup HD and recovery instantly (but OMG, hard
drives are slow).

• Script that does all the work for you is here: http://goo.gl/OLkbjT

http://goo.gl/OLkbjT

Backup your laptop on itself and boot the backups

• I then have historical backups on both my SSD and HD, and
I can boot from my HD if my SSD fails while I'm on a trip
(happened twice already with Crucial and OCZ) or if my btrfs
filesystem crashes and can't boot.

• Make sure you can boot the 2nd drive whether it shows up as
the first drive or second drive in the bios.

• Another option for your laptop if you don't need btrfs
snapshots for your root filesystem, consider putting that on
ext4 or having 2 copies you can boot from like I do (btrfs
failures can still lead to a root filesystem that can't mount,
making your computer sad).

• You can finally push backups of your laptop from hotel
wireless since they're smaller and faster with btrfs send

Backup your backups, and historical backups

Historical backups with btrfs: snapshots + rsync

a) Create a subvolume: backup-$DATE
b) Rsync/copy the data to it
c) snapshot of backup-$DATE to backup-$NEWDATE
d) Rsync filesystem to backup-$NEWDATE
e) Repeat

This is easy to setup
● A bit of work to do after the fact with existing backups
● You cannot hardlink files between snapshots to save space

(but you can use cp –reflink).
● A bit complicated to copy all these snapshots to a secondary

server while keeping the snapshot relationship.

Historical backups with btrfs: cp -a --link + rsync

a) Create a directory backup-$DATE
b) Rsync/copy the data to it
c) cp -a --link backup-$DATE backup-$NEWDATE
d) Rsync filesystem to backup-$NEWDATE
e) Repeat

● It's not as efficient as cp –reflink but you can see the link
relationship between files and keep that when copying to
another filesystem

● Rsync on top of a copied file breaks the hardlink.
● Older versions of btrfs only allow a limited amount of

hardlinks to a single inode.

Historical backups with btrfs: cp --reflink + rsync

a) Create a directory backup-$DATE
b) Rsync/copy the data to it
c) cp -a --reflink backup-$DATE backup-$NEWDATE
d) Rsync filesystem to backup-$NEWDATE
e) Repeat

This may work better than snapshots because:
● You can use hardlinks between backup directories to dedup

identical files: http://code.google.com/p/hardlinkpy/
● Rsync on top of a copied file only modifies changed blocks
● However, unix tools can't keep track of this relationship
● Btrfs send/receive is the only way to keep this.

http://code.google.com/p/hardlinkpy/

Btrfs mixed type filesystems

• mkfs.btrfs -m raid0 -d raid0 /dev/sda1 /dev/sdb1
=> non redundant faster filesystem

• mkfs.btrfs -m raid1 -d raid0 /dev/sda1 /dev/sdb1
=> metadata is redundant but data is still stripped and non
recoverable is a drive is lost (files bigger than 16MB)

• mkfs.btrfs -m raid1 -d single /dev/sda1 /dev/sdb1
=> data for each file will usually be on a single drive and
recoverable (up to 1GB).

• mkfs.btrfs -m raid1 -d raid1 /dev/sda1 /dev/sdb1
=> data is fully redundant and stored on 2 drives

• mkfs.btrfs -m raid1 -d raid5 /dev/sda1 /dev/sdb1 /dev/sdc1
=> medata is only stored on 2 drives, so not more redundant
and slower than -m raid5 -d raid5.

Raid 1 vs Raid 5 or 6

• Btrfs lets you convert from a single drive to Raid 1, or Raid 5/6
on the fly (you need to rebalance after the change)

• Raid 1 only copies each piece of data twice, regardless of how
many drives you have

• Raid 5, 6 are experimental still. Recovery doesn't work in
some cases (code missing), and scrub cannot deal with
rebuilding bad blocks yet (as of 3.16).

• However, you can shrink (remove a drive) while running: this
causes a rebalance to remove data from the drive.

• Adding a drive is instant and you can ask btrfs to rebalance
existing files on all drives (this takes much longer).

• I wrote a lot more about raid5 status here: http://goo.gl/OLkbjT

http://goo.gl/OLkbjT

Now is time for you to evaluate Btrfs.

• If you pick the right btrfs release/kernel (you can let Oracle or
Suse do this for you), you can look at Btrfs for production
use.

• Btrfs send/receive is mostly production ready and you can
look at it today.

• Raid 5/6 still needs work, but is so much faster that it is worth
your time to contribute code to it.

• Bedup (block dedup) also needs contributors, please help if
it's interesting to you.

• In a nutshell, while Btrfs is still experimental, it is usable for
its core features, even if backups are recommended.

• 2015 is the year for you to evaluate it.

http://marc.merlins.org/linux/talks/2015/Btrfs-LCA2015/

